Int. J. Safids Structures Yol. 29. No. 11, pp. 14531455, 1992 0020-"633 92 §500« 00
Printed sn Grest Bntain. Pergamon Press pic

LETTER TO THE EDITOR

Discussion of “Generalized beam theory applied to shear stiffness”,
Int. J. Solids Structures, Vol. 27, No. 15, pp. 1955-1967 (1991)

Dr Renton develops his expressions for the shear contribution to beam deflections by an
energy argument based on the reasonable premise that the reactions at a fixed support
should do no work. This approach would certainly seem to be preferable to the largely ad
hoc methods used by earlier authors. However, an alternative interpretation is to regard
the theory of beams as the beginning of an asymptotic expansion of the solution of a fully
three-dimensional elasticity problem in terms of a small parameter, ¢, defined as the ratio
between a representative dimension in the beam cross-section and the beam length. In this
context, the bending deflection term—about which there is no disagreement—would be the
first term of the expansion and the shear deflection might be defined as the second term,
which is generally two orders higher in &

For the thin rectangular cantilever, 0 < x <a, —bh <y < b, built-in at x = a. the
appropriate three-dimensional problem is defined by the boundary conditions
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(1-3)

where the displacement boundary conditions at the built-in end are imposed in the “strong™
or pointwise sense.

The usual polynomial elasticity solution of this problem involves a distortion of initially
plane sections due to shear and hence can only satisfy these conditions in a weak sense—
either in terms of the displacement andjor displacement gradient at one or more discrete
points or in terms of an average displacement,

To the best of the present author’s knowledge, the exact problem—which will involve
a self-equilibrated “'Saint-Venant™ corrective stress field near the built-in end—has never
been solved. However, some properties of this corrective field can be determined without
completing a full solution. For example, by applying Betti’s reciprocal theorem to the
approximate solution, using a state of simple bending as auxiliary solution, it can be shown
that, if the distorted end section is restored to a plane by a self-equilibrated distribution of
normal stress, g, the location of the resulting plane corresponds to the ‘integral’ boundary
condition

b
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Unfortunately, the boundary condition on the component u, cannot be dealt with as
simply, but it is interesting to note that the use of eqn (4) in the approximate solution,
coupled with the related integral conditions
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gives very nearly the same result as Renton's energy argument. Since Renton’s argument
1s derived from considerations of strain energy in the approximate solution itself, we should
not be surprised to find that his result 1s recovered exactly if (6) is replaced by the end
condition

A
j u, (@, vy =17y dy = 0. (7)
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[t is important to remark that. though the corrective stress field at the built-in end is
localized in the Saint-Venant sense, the corresponding corrective displacement field s not
necessarily localized. since the rigid body motion of the region beyond the end zone will
generally be affected by the precise end conditions applied. Furthermore, it seems reasonable
to expect that the extra constraint (e.g. on the strain component ¢,,) implied by the strong
end conditions (1) above would result in a stiffer restraint than that predicted by the
elementary beam theory. Somewhat similar effects are obtained when u cantilever is sub-
jected to torsion and the end-plane s restrained from warping. in which case the rotation
of the free end can be significantly reduced (Timoshenko and Goodicer, 1970).

It is perhaps instructive to consider the simpler problem in which the rectangular
cantilever beam is toaded only by a bending moment at the free end ie. in which the
conditions (2, 3) at x = 0 are repliced by

(3}
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In this case, the clementary solution predicts no distortion of plance sections and there
is no shear force, but Potsson’s ratio effects ensure that there s a non-zero value of ¢, .,
which must be constrained by a local corrective field at the built-in end. This tocal ticld will
itsell account tor some strain energy and, as a result, the rotation of the applied moment,
M, will be less than that predicted by the clementary theory. Furthermore, this reduction
in rotation must be concentrated in the end zone, so that its eftfect on the beam displacement
is seen principally as a rigid body rotation, which in turn will cause the end deflection to
be less than that predicted by the elementary theory by an amount which is proportional
to the length of the beam. This term is of the same order in the supposed asymptotic
expansion is the shear deflection term, notwithstanding the fact that in the present problem
there is no shear force to produce such a deflection.

The purposc of this perhaps rather laboured discussion is to show that “*Saint-Venant™
type end effects in beam problems produce corrections to the beam deflections that are of
the same order in an asymptotic expansion of the exact three-dimensional solution as those
due to legitimate shear deflection effects, even though the latter are generally significantly
larger, as demonstrated by the relatively minor differences between previously published
estimates histed in Renton's Introduction. Thus, the attempt to place shear detlections on
a legitimate footing by asymptotic expansion scems doomed to failure.

Shear deflection estimates also introduce other paradoxical effects into the beam theory
which deserve further discussion. For example, we might define a concentrated moment,
A, applied at the point x on a beam as the limit as dx — 0 of a pair of equal and opposite
concentrated transverse forces of magnitude Af/dx at the points x and x +ox respectively.
However, the infinitesimal region of beam between x and x+dx will expericnee a shear
deflection which tends to a constant rather than zero as dx — 0, suggesting that a con-
centrated moment should be associated with 4 step in transverse deflection. On the other
hand. no such deflection would be expected if the concentrated moment were regarded as
due to two equal and opposite horizontal forces acting (say) at the top and bottom of the
beam. This suggests that a consistent second-order beam theory would need to encompass
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higher order information about the method of load application (and hence about the local
stress state in the beam), beyond a mere statement of force resultants.
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